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Abstract 
In this study, the numerical solution for the Modified Equal Width Wave (MEW) equation is pre-
sented using Fourier spectral method that use to discretize the space variable and Leap-frog me-
thod scheme for time dependence. Test problems including the single soliton wave motion, inte-
raction of two solitary waves and interaction of three solitary waves will use to validate the pro-
posed method. The three invariants of the motion are evaluated to determine the conservation 
properties of the generated scheme. Finally, a Maxwellian initial condition pulse is then studied. 
The L2 and L∞ error norms are computed to study the accuracy and the simplicity of the presented 
method. 
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1. Introduction 
Discretization using finite differences in time and spectral methods in space has proved to be very useful in 
solving numerically non-linear Partial Differential Equations (PDEs) describing wave propagation. The Korte-
weg de Vries (KdV) equation is one famous example to which such combined schemes have been applied effi-
ciently to analyze efficiently unidirectional solitary wave propagation in one dimension [1]-[3]. In [4] [5] the 
combination of spectral methods and finite differences is applied to well-known nonlinear PDE of the Boussi-
nesq type which admits bidirectional wave propagation, has closed form solitary wave solutions and like the 
KdV is completely integrable in one space dimension. Also, the combination of spectral methods and leap frog 
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is applied to the Regularized Long Wave (RLW) equation [6]. In this paper, a combination of spectral method 
and leap frog is applied to the modified equal width wave equation. The modified equal width wave equation 
based upon the Equal Width Wave (EW) equation [7] [8] which was suggested by Morrison et al. [9] is used as 
a model partial differential equation for the simulation of one-dimensional wave propagation in nonlinear media 
with dispersion processes. This equation is related with the Modified Regularized Long Wave (MRLW) equa-
tion [10] and modified Korteweg-de Vries (MKdV) equation [11]. All the modified equations are nonlinear 
wave equations with cubic nonlinearities and all of them have solitary wave solutions, which are wave packets 
or pulses. These waves propagate in non-linear media by keeping wave forms and velocity even after interaction 
occurs. Few analytical solutions of the MEW equation are known. Thus numerical solutions of the MEW equa-
tion can be important and comparison between analytic solutions can be made. Geyikli and Battal Gazi Karakoc, 
[12] [13] solved the MEW equation by a collocation method using septic B-spline finite elements and using a 
Petrov-Galerkin finite element method with weight functions quadratic and element shape functions which are 
cubic B-splines. Esen applied a lumped Galerkin method based on quadratic B-spline finite elements which have 
been used for solving the EW and MEW equations [14] [15]. Saka proposed algorithms for the numerical solu-
tion of the MEW equation using quintic B-spline collocation method [16]. Zaki considered the solitary wave in-
teractions for the MEW equation by collocation method using quintic B-spline finite elements [17] and obtained 
the numerical solution of the EW equation by using least-squares method [18]. Wazwaz investigated the MEW 
equation and two of its variants by the tanh and the sine-cosine methods [19]. A solution based on a collocation 
method incorporated cubic B-splines is investigated by and Saka and Dag [20]. Variational iteration method is 
introduced to solve the MEW equation by Lu [21]. Evans and Raslan [22] studied the generalized EW equation 
by using collocation method based on quadratic B-splines to obtain the numerical solutions of a single solitary 
waves and the birth of solitons. Hamdi et al. [23] derived exact solitary wave solutions of the generalized EW 
equation using Maple software. Esen and Kutluay studied a linearized implicit finite difference method in solv-
ing the MEW equation [24]. Karakoç and Geyikli [25] solved the MEW equation numerically by a lumped Ga-
lerkin method using cubic B-spline finite elements. The modified equal width wave equation has the normalized 
form [9] 

23 0,t x xxtU U U Uµ+ − =                                  (1) 

where μ is a positive parameter and the subscripts x and t denote differentiation, when solved analytically, within 
an infinite region with physical boundary conditions 0U →  as x →∞ . In this study, boundary conditions 
are chosen from 

( ) ( ), 0, , 0, 0U a t U b t t= = >                                (2) 

and the initial condition 

( ) ( ),0 ,U x f x a x b= ≤ ≤                                 (3) 

where ( )f x  is a localized disturbance inside the considered interval. We investigate the numerical solution of 
the MEW equation using the Fourier Leap-Frog methods. The proposed method is validated by studying the 
motion of a single solitary wave, development of interaction of two positive solitary waves and development of 
three positive solitary waves interaction for the MEW Equation (1). 

2. Analysis the Proposed Method 
For the numerical treatment, the spatial variable x of Equation (1) is restricted over an interval a x b≤ ≤ . In this 
study, consider the MEW Equation (1) with the boundary conditions in Equation (2). A numerical method is 
developed for the periodic initial value problem in which U is a prescribed function of x at t = 0 and the solution 
is periodic in x outside a basic interval a x b≤ ≤ . For most of the problems considered, interval may be chosen 
large enough so the boundaries do not affect the wave interactions being studied. Equation (1) can be written as 

23 ,t xV U U=−                                      (4) 
where 

.xxV U Uµ= −                                      (5) 

For ease of presentation the spatial period [a, b] is normalized to [0, 2π], with the change of variable 
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( )2πx x a
b a

→ −
−

. 

Let L = b − a. Thus, Equations (4) and (5) become 
22π

xxV U U
L

µ = −  
 

,                                  (6) 

22π3 ,t xV U U
L

 = −  
 

                                   (7) 

( ),U x t  is transformed into Fourier space with respect to x, and derivatives (or other operators) with respect to x. 
This operation can be done with the Fast Fourier transform (FFT). Applying the inverse Fourier transform  

( ) ( ){ }1 , 1, 2,
n

n
n

U F ik F U n
x

−∂
= =

∂


 with n = 1 and n = 2. The Equations (6) and (7) become 

( ){ }
2

1 22π ,V U F k F U
L

µ − = − − 
 

                            (8) 

( ){ }2 12π3 .tV U F ik F U
L

− =−  
 

                             (9) 

In practice, we need to discretize Equations (6) and (7). For any integer N > 0, consider 
2π

j
jx j x

N
= ∆ = ,  

0,1, , 1j N= − . Let ( ),U x t  be the solution of Equations (8) and (9). Then, we transform it into the discrete 
Fourier space as 

( ) ( ) ( )
1

0

1, , e , 1.
2 2

j
N

ikx
j

J

N NU k t F U U x t k
N

−
−

=

= = − ≤ ≤ −∑


                   (10) 

From this, using the inversion formula, we get 

( ) ( ) ( )
2 1

1

2
, , e ,0 1.j

N
ikx

j
k N

U x t F U U k t j N
−

−

=−

= = ≤ ≤ −∑
 

                    (11) 

Replacing F and 1F −  by their discrete counterparts, and discretizing Equations (8) and (9) give 

( ) ( ) ( ){ }
2

1 22π, , ,j jV x t U x t F k F U
L

µ − = − − 
 

                      (12) 

( ) ( ) ( ){ }2 1
, 2π3 , .j

j

V x t
U x t F i k F U

t L
−

∂  =−  ∂  
                      (13) 

Letting ( ) ( ) ( ) T
0 1 1, , , , , , .NU x t U x t U x t− =  U  Equation (13) can be written in the vector form 

( )t =V G U                                      (14) 

where G(U) defines the right hand side of Equation (13). 

3. Fourier Leap-Frog Method for MEW Equation 
A time integration known as a Leap-Frog method (a two-step scheme) is given as 

( ) ( ) 1 1, ,
2 2

n n

t
V x t t V x t t V VV

t t

+ −+ ∆ − −∆ −
= =

∆ ∆
 

Use the Leap-Frog scheme to advance in time, we obtain ( ) ( ) ( )( ), , 2V x t t V x t t tG U t+ ∆ = −∆ + ∆ . 
This is called the Fourier-Leap-Frog (FLF) scheme for the MEW Equation (14). FLF method needs two levels 

of initial data, we begin with ( ),0U x  to get ( ),0V x  from Equation (12), we get 
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( ) ( )( )( )
2

1 22π, , 1 ,V x n t F F U x n t k
L

µ−
    ∆ = ∆ +       

                    (15) 

( ) ( )( )( )
2

1 22π,0 ,0 1 .V x F F U x k
L

µ−
    = +       

                      (16) 

Then evaluate second level of initial solution ( ),V x t∆  by using a higher-order one-step method, for exam-
ple, a fourth-order Runge-Kutta method (RK4). 

( )( )

( )

( )

( )( )
( ) ( )

1

2 1

3 2

4 3

1 2 3 4

,0 ,0

1 1,0 ,
2 2
1 1,0 ,
2 2

,0 ,

, ,0 2 2
6

K F U x

K F U x tK t

K F U x tK t

K F U x tK t

tV x t V x K K K K

=

 = + ∆ ∆ 
 
 = + ∆ ∆ 
 

= + ∆ ∆

∆
∆ = + + + +  

                      (17) 

then substitute ( ),V x t∆  in 

( )
( )( )1

2
2

,
,

2π1

F V x n t
U x n t F

k
L

µ

−

 
 ∆ ∆ =    +     

                           (18) 

to get ( ), .U x t∆  Thus, the time discretization for Equation (13) is given as 

( ) ( ) ( ) ( )( ){ }2 12π, , 2 3 , , .V x t t V x t t t U x t F ik F U x t
L

−  + ∆ = − ∆ − ∆   
  

             (19) 

We substitute V(x, 0) and U(x, Δt) in Equation (19) to evaluate V(x, 2Δt) then substitute V(x, 2Δt) in Equation 
(18) to evaluate U(x, 2Δt), so we have V(x, Δt) and U(x, 2Δt), substitute in Equation (19) to evaluate V(x, 3Δt) 
and evaluate U(x, 3Δt) from Equation (18) and so on, until we evaluate U(x, t) at time t = nΔt. 

4. Cases Study and Results 
In order to show how good the numerical solutions are in comparison with the exact ones, L2 and L∞ error norms 
will be computed by 

1 2
2

2 2 1
,

max .

N
exact num exact num

i i
i

exact num exact num
i ii

L u u x u u

L u u u u
=

∞ ∞

 = − = ∆ −  

= − = −

∑
                        (20) 

The conservation properties of the MEW equation will be examined by calculating the following three inva-
riants, given as [17] which respectively correspond to mass, momentum, and energy 

( )

( ) ( )( ) ( )( )

( )( )

1
1

2 222
2

1

44
3

1

d , ,

d , , ,

d , .

nb
ja

j

nb
x j x ja

j

nb
ja

j

C U x x U x t

C U U x x U x t U x t

C U x x U x t

µ µ

=

=

=

= = ∆

  = + = ∆ +    

= = ∆

∑∫

∑∫

∑∫

                (21) 
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For the computation of Ux in Equation (21), we used Fourier transform. To implement the performance of the 
method, three test problems will be considered: the motion of a single solitary wave, development of two posi-
tive solitary waves interaction, development of three positive solitary wave interaction. 

4.1. The Motion of Single Solitary Wave 
Consider Equation (1) with the boundary 0U →  as x → ± ∞  and initial condition 

( ) ( )0,0 sec .U x A h k x x = −                               (22) 

This problem has a solitary wave solution of the form 

( ) ( )0, secU x t A h k x x tυ = − −                            (23) 

which represents the motion of a single solitary wave with amplitude A, where the wave velocity 2 2Aυ =  and 
1k µ= . For this problem the analytical values of the invariants are [16] 

2 2 4

1 2 3
π 2 2 4, , .

3 3
A A kA AC C C
k k k

µ
= = + =                        (24) 

For the numerical simulation of the motion of a single solitary wave, the parameters Δx = 0.1, Δt = 0.001, μ = 
1, x0 = 30, N = 2048 and A = 0.25 are chosen. The analytical values for the invariants are C1 = 0.7853982, C2 = 
0.1666667, and C3 = 0.0052083. As it is seen from Table 1, the invariants C1 and C3 remain almost constant 
during the computer run at times t = 0 to t = 100 (changes of the invariants C1 and C3 approach zero), where C2 
changes from its initial value by less than 1 × 10−9. The error norms L2 and L∞ at different various times are 
shown in Table 1. It is shown that the numerical values very close to the exact values. Figure 1(a) shows that 
the proposed method performs the motion of propagation of a solitary wave satisfactorily, which moved to the 
right at a constant speed and preserved its amplitude and shape with increasing time as expected. Amplitude is 
0.25 at t = 0 which is located at x = 30, while it is 0.249985 at t = 20 which is located at x = 30.6149. The abso-
lute difference in amplitudes at times t = 0 and t = 20 is only 1.5 × 10−5. Error distribution at time t = 20 is drawn 
in Figure 1(b), from which it can be seen that maximum errors happened just around the peak position of the 
solitary wave. Table 2 displays the values of the error norms and numerical invariants obtained at different val-
ues of N with Δx = 0.1, Δt = 0.001, μ = 1, x0 = 30 and A = 0.25. As it is seen from Table 2, the error norms de-
crease (halved) when N increases (doubled) and numerical invariants C1, C2 and C3 closed to the analytical val-
ues when N increases. The comparison between the results obtained by the present with those in the other stu-
dies [15] [22] [24] [25] also documented in Table 2. 
 

  
(a)                                                       (b) 

Figure 1. (a) The motion of a single solitary wave and (b) the error distribution in FLF scheme for MEW equation with A = 
0.25, N = 2048, Δx = 0.1 and Δt = 0.001 at t = 20. 
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Table 1. Invariants and error norms for the single soliton using FLF scheme with A = 0.25, N = 2048, Δx = 0.1 and Δt = 
0.001. 

t C1 C2 C3 L2 × 103 L∞ × 103 

0 0.785014668 0.166625987 0.005205790 0.0000000 0.0000000 

5 0.785014668 0.166625987 0.005205790 0.0069317 0.0032278 

10 0.785014668 0.166625986 0.005205790 0.0160855 0.0081248 

15 0.785014668 0.166625986 0.005205790 0.0226029 0.0113299 

20 0.785014668 0.166625986 0.005205790 0.0275859 0.0129414 

25 0.785014668 0.166625986 0.005205790 0.0343768 0.0161599 

30 0.785014668 0.166625986 0.005205790 0.0410980 0.0193344 

35 0.785014668 0.166625986 0.005205790 0.0477366 0.0224764 

40 0.785014668 0.166625986 0.005205790 0.0558158 0.0273561 

45 0.785014668 0.166625986 0.005205790 0.0622846 0.0305792 

50 0.785014668 0.166625986 0.005205790 0.0686557 0.0337939 

100 0.785014668 0.166625986 0.005205790 0.1239589 0.0654669 

 
Table 2. Invariants, error norms for the single soliton MEW equation using FLF scheme with A = 0.25, Δx = 0.1 and Δt = 
0.001 at different values of N at t = 20 and comparison with different methods at A = 0.25, Δt = 0.05 and Δx = 0.1. 

N C1 C2 C3 L2 × 103 L∞ × 103 

512 0.7838642 0.1665041 0.0051982 0.1103535 0.0517942 

1024 0.7846312 0.1665853 0.0052033 0.0551734 0.0258918 

2048 0.7850147 0.1666260 0.0052058 0.0275859 0.0129412 

4096 0.7852064 0.1666463 0.0052071 0.0137927 0.0064692 

8192 0.7853023 0.1666565 0.0052077 0.0068963 0.0032342 

Ref [15] 0.7853898 0.1667614 0.0052082 0.0796940 0.0465523 

Ref [22] 0.7849545 0.1664765 0.0051995 0.2905166 0.2498925 

Ref [24] 0.7853977 0.1664735 0.0052083 0.2692812 0.2569972 

Ref [25] 0.7853967 0.1666663 0.0052083 0.0800980 0.0460618 

4.2. Interaction of Two Solitary Waves 
The initial condition given by the linear sum of two separate solitary waves of various amplitudes 

( ) ( )( )
2

1
,0 sec ,j j

j
u x A h k x x

=

= −∑                            (25) 

where 1k µ= . Firstly the interaction of two positive solitary waves is study with the parameters A1 = 1, A2 = 
0.5, x1 = 15, x2 = 30, N = 8192, Δx = 0.1 and Δt = 0.01. The analytic invariants are [25], 

( )1 1 2  π  4.7123889C A A= + = , ( )( )2 2
2 1 28 3 3.3333333C A A= + =  and ( )( )4 4

3 1 24 3 1.4166667C A A= + = . The 
initial function was placed on the left side of the region with the larger wave to the left of the smaller one as seen 
in Figure 2(a). Both waves move to the right with velocities dependent upon their magnitudes. The larger wave 
catches up with the smaller one as time increase. Interaction started at about time t = 25, the overlapping process 
continues until the time t = 40, then two solitary waves emerge from the interaction and resume their former 
shapes and amplitudes as shown in Figures 2(b)-(f). The magnitude of the smaller wave 0.510741 on reaching  
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 2. Interaction of two solitary waves at different times with A1 = 1 and A2 = 0.5. 
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position x = 34.7 and of the larger wave 1.000097 having the position x = 44.4 are measured at time t = 55 so 
that difference in amplitudes is 0.010741 for the smaller wave and 0.000097 for the larger wave. Table 3 dis-
plays the values of the invariants obtained by the present method. It is observed that the obtained values of the 
invariants remain almost constant during the computer run. The change in C2 is 6.11 × 10−5 and in C3 is 5.68 × 
10−5 and C1 is exact up to the last recorded digit. 

The intersection of two solitary waves was also studies with the following parameters: μ = 1, x1 = 15, x2 = 30, 
A1 = −2, A2 = 1, N = 8192, Δt = 0.01 and Δx = 0.1 in the range 0 ≤ x ≤ 819.2. The experiment was run from t = 0 
to t = 55 to allow the interaction to take place. Figure 3 shows the development of the solitary wave interaction. 
As is seen from Figure 3, at t = 0 a wave with the negative amplitude is on the left of another wave with the 
positive amplitude. The larger wave with the negative amplitude catches up with the smaller one with the posi-
tive amplitude as the time increases. At t = 55, the amplitude of the smaller wave is at the point 0.9741792 at the 
point 52.5064095 whereas the amplitude of the larger one is −2.0014682 at the point 123.6150897326334 It is 
found that the absolute difference in amplitudes is 0.025820781 for the smaller wave and 0.00146821 for the 
larger wave. The analytical invariants can be found as C1 = −3.1415927, C2 = 13.3333333 and C2 = 22.6666667. 
It can be seen in Table 3 that the values obtained for the invariants are satisfactorily constant during the com-
puter run. 

4.3. Interaction of Three Solitary Waves 
Interaction of three solitary waves is studied by considering Equation (1) with the following initial condition: 

( ) ( )( )
3

1
,0 sec ,j j

j
u x A h k x x

=

= −∑                               (26) 

where 1 µ= . The computations are carried out with parameters = 1, A1 = 1, A2 = 0.5, A3 = 0.25, x1 = 15, x2 = 
30, x3 = 45, N = 8192, Δx = 0.1 and Δt = 0.01. Solitary wave having the largest amplitude is located to the left of 
the smaller ones. As is well known, solitary waves with larger amplitudes have a greater velocity than those with 
smaller amplitudes. Consequently, as time goes on the larger two solitary waves catches up with the smaller one, 
the overlapping process of the three solitary waves continues while the larger solitary waves have overtaken the 
smaller ones. Plot of the three solitary waves is depicted at various times in Figure 4. Interaction of three solitary  
 
Table 3. Invariants for the interaction of two solitary waves with Δt = 0.01, Δx = 0.1 and N = 8192. 

t 
A1 = 1, A2 = 0.5 A1 = −2, A2 = 1 

C1 C2 C3 C1 C2 C3 

0 4.7118132 3.3331323 1.4164968 −3.1412080 13.3325098 22.6638508 

5 4.7118132 3.3330876 1.4164524 −3.1412080 13.3293775 22.6514303 

10 4.7118132 3.3330830 1.4164479 −3.1412080 13.3306037 22.6526691 

15 4.7118132 3.3330828 1.4164480 −3.1412080 13.3293817 22.6514527 

20 4.7118132 3.3330828 1.4164480 −3.1412080 13.3293781 22.6514501 

25 4.7118132 3.3330822 1.4164476 −3.1412080 13.3293776 22.6514500 

30 4.7118132 3.3330776 1.4164476 −3.1412080 13.3293774 22.6514500 

35 4.7118132 3.3330712 1.4164400 −3.1412080 13.3293774 22.6514500 

40 4.7118132 3.3330803 1.4164462 −3.1412080 13.3293773 22.6514500 

45 4.7118132 3.3330826 1.4164478 −3.1412080 13.3293749 22.6514500 

50 4.7118132 3.3330831 1.4164481 −3.1412080 13.3293750 22.6514500 

55 4.7118132 3.3330831 1.4164481 −3.1412080 13.3293751 22.6514500 
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 3. Interaction of two solitary waves at different times with A1 = −2 and A2 = 1. 
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 4. Interaction of three solitary waves at different times. 
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waves can be openly observed from the time-amplitude graph in Figure 4 for the three algorithms. At t = 200, 
the amplitudes of the smaller waves are 0.25613 at the point x = 47.21 and 0.49672 at the point x = 54.41,  
whereas the amplitude of the larger one is 1.00032 at the point x = 117.91. Table 4 displays the values of the 
invariants obtained by the present method. It is observed that the obtained values of the invariants remain almost 
constant during the computer run. The change in C2 is 5.37 × 10−5 and in C3 is 5.09 × 10−5 and C1 is exact up  
to the last recorded digit. The analytical values can be found [25] as ( )1 1 2 3  5.4977871C A A Aπ= + + = , 

( )( )2 2 2
2 1 2 38 3 3.5C A A A= + + =  and ( )( )4 4 4

3 1 2 34 3 1.421875C A A A= + + = . 

4.4. The Maxwellian Initial Condition 
We consider here is the numerical solution of the Equation (1) with the Maxwellian initial condition 

( ) 2
,0 e xu x −= ,                                    (27) 

with the boundary conditions 

( ) ( ) ( ) ( )20, 20, 20, 20, 0x xu t u t u t u t− = − = = = . 

As it is known, Maxwellian initial condition the behavior of the solution depends on the values of µ. The 
computations are carried out for the cases µ = 1, 0.5, 0.1, 0.05, 0.02 and 0.005 which are used in [12] [17] [21]. 
When µ = 1, 0.5 is used as shown Figure 5(a) and Figure 5(b) at time t = 12 the Maxwellian initial condition 
does not cause development into a clean solitary wave. However with smaller values of µ = 1, 0.1, 0.05, 0.02 
and 0.005 Maxwellian initial condition breaks up into more solitary waves which drawn in Figures 5(c)-(f) at 
time t = 12. The numerical conserved quantities with µ = 1, 0.5, 0.1, 0.05, 0.02 and 0.005 are given in Table 5. 
It can be seen in Table 4 that the values obtained for the invariants are satisfactorily constant during the com-
puter run. 

5. Conclusion 
The Fourier Leap Frog method has been successfully applied to obtain the numerical solution of the modified 
equal width wave equation. Four test problems are worked out to examine the performance of the used method. 
The motion of a single solitary wave and its accuracy was shown by calculating error norms L2 and L∞ and 
shown in the figures and tables. The interaction of two solitary waves and its accuracy shown by compare with 
other numerical solutions. The interaction of three solitary waves and its accuracy shown by compare with other 
numerical solutions. A Maxwellian initial condition pulse is then studied at different values of µ. The invariants  
 

Table 4. Invariants for the interaction of three solitary waves. 

t C1 C2 C3 

0 5.4971155 3.4997894 1.4217047 

20 5.4971155 3.4997399 1.4216558 

40 5.4971155 3.4997374 1.4216540 

60 5.4971155 3.4997357 1.4216538 

80 5.4971155 3.4997401 1.4216560 

100 5.4971155 3.4997401 1.4216560 

120 5.4971155 3.4997401 1.4216560 

140 5.4971155 3.4997400 1.4216559 

160 5.4971155 3.4997401 1.4216560 

180 5.4971155 3.4997401 1.4216560 

200 5.4971155 3.4997401 1.4216560 
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(a)                                                      (b) 

 
(c)                                                      (d) 

 
(e)                                                       (f) 

Figure 5. Maxwellian initial condition, state at t = 12 and different values of µ. 
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Table 5. Invariants for Maxwellian initial condition at different values of µ. 

t µ C1 C2 C3 

0 

1 

1.7715884 2.5066286 0.8857942 

3 1.7715884 2.5066279 0.8857938 

6 1.7715884 2.5066276 0.8857936 

9 1.7715884 2.5066277 0.8857937 

12 1.7715884 2.5066275 0.8857937 

0 

0.5 

1.7715884 1.8796654 0.8857942 

3 1.7715884 1.8796645 0.8857934 

6 1.7715884 1.8796646 0.8857934 

9 1.7715884 1.8796646 0.8857935 

12 1.7715884 1.8796645 0.8857935 

0 

0.1 

1.7715884 1.3780948 0.8857942 

3 1.7715884 1.3780956 0.8857942 

6 1.7715884 1.3780957 0.8857942 

9 1.7715884 1.3780955 0.8857941 

12 1.7715884 1.3780955 0.8857941 

0 

0.05 

1.7715884 1.3153985 0.8857942 

3 1.7715884 1.3154016 0.8857967 

6 1.7715884 1.3154017 0.8857967 

9 1.7715884 1.3154017 0.8857967 

12 1.7715884 1.3154016 0.8857967 

0 

0.02 

1.7715884 1.2777807 0.8857942 

3 1.7715884 1.2777913 0.8858065 

6 1.7715884 1.2777914 0.8858066 

9 1.7715884 1.2777913 0.8858066 

12 1.7715884 1.2777914 0.8858066 

0 

0.005 

1.7715884 1.2589718 0.8857942 

3 1.7715884 1.2590204 0.8858617 

6 1.7715884 1.2590208 0.8858619 

9 1.7715884 1.2590209 0.8858619 

12 1.7715884 1.2590209 0.8858619 

 
are satisfactorily constant in computer run in all cases. The obtained results show that the present method is a 
remarkably successful numerical method and can also be efficiently applied to other types of non-linear problems. 
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